About 52 results
Open links in new tab
  1. What exactly is a Bayesian model? - Cross Validated

    Dec 14, 2014 · A Bayesian model is a statistical model made of the pair prior x likelihood = posterior x marginal. Bayes' theorem is somewhat secondary to the concept of a prior.

  2. Posterior Predictive Distributions in Bayesian Statistics

    Feb 17, 2021 · Confessions of a moderate Bayesian, part 4 Bayesian statistics by and for non-statisticians Read part 1: How to Get Started with Bayesian Statistics Read part 2: Frequentist …

  3. What is the best introductory Bayesian statistics textbook?

    Which is the best introductory textbook for Bayesian statistics? One book per answer, please.

  4. Bayesian and frequentist reasoning in plain English

    Oct 4, 2011 · How would you describe in plain English the characteristics that distinguish Bayesian from Frequentist reasoning?

  5. Help me understand Bayesian prior and posterior distributions

    The basis of all bayesian statistics is Bayes' theorem, which is $$ \mathrm {posterior} \propto \mathrm {prior} \times \mathrm {likelihood} $$ In your case, the likelihood is binomial. If the prior and the …

  6. How to write up and report a Bayesian analysis? - Cross Validated

    5 Bayesian Estimation Supersedes the t-Test for John K. Kruschke is one of the most important papers that I had read explaining how to run the Bayesian analysis and how to make the plots. But the most …

  7. What is the difference in Bayesian estimate and maximum likelihood ...

    Bayesian estimation is a bit more general because we're not necessarily maximizing the Bayesian analogue of the likelihood (the posterior density). However, the analogous type of estimation (or …

  8. Calculating Probabilities in a Bayesian Network - Cross Validated

    Jan 28, 2021 · Calculating Probabilities in a Bayesian Network Ask Question Asked 4 years, 10 months ago Modified 4 years, 10 months ago

  9. r - Understanding Bayesian model outputs - Cross Validated

    Sep 3, 2025 · In a Bayesian framework, we consider parameters to be random variables. The posterior distribution of the parameter is a probability distribution of the parameter given the data. So, it is our …

  10. bayesian - What's the difference between a confidence interval and a ...

    Bayesian approaches formulate the problem differently. Instead of saying the parameter simply has one (unknown) true value, a Bayesian method says the parameter's value is fixed but has been chosen …